Logo Search packages:      
Sourcecode: iverilog version File versions  Download package

t-dll-proc.cc

/*
 * Copyright (c) 2000-2009 Stephen Williams (steve@icarus.com)
 *
 *    This source code is free software; you can redistribute it
 *    and/or modify it in source code form under the terms of the GNU
 *    General Public License as published by the Free Software
 *    Foundation; either version 2 of the License, or (at your option)
 *    any later version.will need a Picture Elements Binary Software
 *    License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
 */

# include "config.h"

# include  <iostream>

# include  <cstring>
# include  "target.h"
# include  "ivl_target.h"
# include  "compiler.h"
# include  "t-dll.h"
#ifdef HAVE_MALLOC_H
# include  <malloc.h>
#endif
# include  <stdlib.h>

bool dll_target::process(const NetProcTop*net)
{
      bool rc_flag = true;

      ivl_process_t obj = (struct ivl_process_s*)
          calloc(1, sizeof(struct ivl_process_s));

      obj->type_ = net->type();
      obj->analog_flag = 0;

      FILE_NAME(obj, net);

      /* Save the scope of the process. */
      obj->scope_ = lookup_scope_(net->scope());

      obj->nattr = net->attr_cnt();
      obj->attr = fill_in_attributes(net);

      /* This little bit causes the process to be completely
         generated so that it can be passed to the DLL. The
         stmt_cur_ member is used to hold a pointer to the current
         statement in progress, and the emit_proc() method fills in
         that object.

         We know a few things about the current statement: we are
         not in the middle of one, and when we are done, we have our
         statement back. The asserts check these conditions. */

      assert(stmt_cur_ == 0);
      stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
      assert(stmt_cur_);
      rc_flag = net->statement()->emit_proc(this) && rc_flag;

      assert(stmt_cur_);
      obj->stmt_ = stmt_cur_;
      stmt_cur_ = 0;

      /* Save the process in the design. */
      obj->next_ = des_.threads_;
      des_.threads_ = obj;

      return rc_flag;
}

void dll_target::task_def(const NetScope*net)
{
      ivl_scope_t scop = lookup_scope_(net);
      const NetTaskDef*def = net->task_def();

      assert(stmt_cur_ == 0);
      stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
      assert(stmt_cur_);
      def->proc()->emit_proc(this);

      assert(stmt_cur_);
      scop->def = stmt_cur_;
      stmt_cur_ = 0;

}

bool dll_target::func_def(const NetScope*net)
{
      ivl_scope_t scop = lookup_scope_(net);
      const NetFuncDef*def = net->func_def();

      assert(stmt_cur_ == 0);
      stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
      assert(stmt_cur_);
      def->proc()->emit_proc(this);

      assert(stmt_cur_);
      scop->def = stmt_cur_;
      stmt_cur_ = 0;

      scop->ports = def->port_count() + 1;
      if (scop->ports > 0) {
          scop->port = new ivl_signal_t[scop->ports];
          for (unsigned idx = 1 ;  idx < scop->ports ;  idx += 1)
              scop->port[idx] = find_signal(des_, def->port(idx-1));
      }

      /* FIXME: the ivl_target API expects port-0 to be the output
         port. This assumes that the return value is a signal, which
         is *not* correct. Someday, I'm going to have to change
         this, but that will break code generators that use this
         result. */
      if (const NetNet*ret_sig = def->return_sig()) {
          scop->port[0] = find_signal(des_, ret_sig);
          return true;
      }

      cerr << "?:0" << ": internal error: "
         << "Function " << net->basename() << " has a return type"
         << " that I do not understand." << endl;

      return false;
}

/*
 * This private function makes the assignment lvals for the various
 * kinds of assignment statements.
 */
void dll_target::make_assign_lvals_(const NetAssignBase*net)
{
      assert(stmt_cur_);

      unsigned cnt = net->l_val_count();

      stmt_cur_->u_.assign_.lvals_ = cnt;
      stmt_cur_->u_.assign_.lval_  = new struct ivl_lval_s[cnt];
      stmt_cur_->u_.assign_.delay  = 0;

      for (unsigned idx = 0 ;  idx < cnt ;  idx += 1) {
          struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_ + idx;
          const NetAssign_*asn = net->l_val(idx);
          const NetExpr*loff = asn->get_base();

          if (loff == 0) {
              cur->loff = 0;
          } else {
              loff->expr_scan(this);
              cur->loff = expr_;
              expr_ = 0;
          }

          cur->width_ = asn->lwidth();

          if (asn->sig()) {
              cur->type_ = IVL_LVAL_REG;
              cur->n.sig = find_signal(des_, asn->sig());

              cur->idx = 0;
                // If there is a word select expression, it is
                // really an array index. Note that the word index
                // expression is already converted to canonical
                // form by elaboration.
              if (asn->word()) {
                  assert(expr_ == 0);
                  asn->word()->expr_scan(this);
                  cur->type_ = IVL_LVAL_ARR;
                  cur->idx = expr_;
                  expr_ = 0;
              }
          } else {
              assert(0);
          }
      }
}

void dll_target::proc_alloc(const NetAlloc*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_ALLOC;
      stmt_cur_->u_.alloc_.scope = lookup_scope_(net->scope());
}

/*
 */
bool dll_target::proc_assign(const NetAssign*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);

      stmt_cur_->type_ = IVL_ST_ASSIGN;
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->u_.assign_.delay = 0;

      /* Make the lval fields. */
      make_assign_lvals_(net);

      assert(expr_ == 0);
      net->rval()->expr_scan(this);
      stmt_cur_->u_.assign_.rval_ = expr_;
      expr_ = 0;

      const NetExpr*del = net->get_delay();
      if (del) {
          del->expr_scan(this);
          stmt_cur_->u_.assign_.delay = expr_;
          expr_ = 0;
      }

      return true;
}


void dll_target::proc_assign_nb(const NetAssignNB*net)
{
      const NetExpr* delay_exp = net->get_delay();
      const NetExpr* cnt_exp = net->get_count();
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);

      stmt_cur_->type_ = IVL_ST_ASSIGN_NB;
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->u_.assign_.delay  = 0;
      stmt_cur_->u_.assign_.count  = 0;
      stmt_cur_->u_.assign_.nevent  = 0;

      /* Make the lval fields. */
      make_assign_lvals_(net);

      /* Make the rval field. */
      assert(expr_ == 0);
      net->rval()->expr_scan(this);
      stmt_cur_->u_.assign_.rval_ = expr_;
      expr_ = 0;

      /* Process a delay if it exists. */
      if (const NetEConst*delay_num = dynamic_cast<const NetEConst*>(delay_exp)) {
          verinum val = delay_num->value();
          ivl_expr_t de = new struct ivl_expr_s;
          de->type_ = IVL_EX_DELAY;
          de->width_  = 8 * sizeof(uint64_t);
          de->signed_ = 0;
          de->u_.delay_.value = val.as_ulong64();
          stmt_cur_->u_.assign_.delay = de;

      } else if (delay_exp != 0) {
          delay_exp->expr_scan(this);
          stmt_cur_->u_.assign_.delay = expr_;
          expr_ = 0;
      }

      /* Process a count if it exists. */
      if (const NetEConst*cnt_num = dynamic_cast<const NetEConst*>(cnt_exp)) {
          verinum val = cnt_num->value();
          ivl_expr_t cnt = new struct ivl_expr_s;
          cnt->type_ = IVL_EX_ULONG;
          cnt->width_  = 8 * sizeof(unsigned long);
          cnt->signed_ = 0;
          cnt->u_.ulong_.value = val.as_ulong();
          stmt_cur_->u_.assign_.count = cnt;

      } else if (cnt_exp != 0) {
          cnt_exp->expr_scan(this);
          stmt_cur_->u_.assign_.count = expr_;
          expr_ = 0;
      }

      /* Process the events if they exist. This is a copy of code
       * from NetEvWait below. */
      if (net->nevents() > 0) {
          stmt_cur_->u_.assign_.nevent = net->nevents();
          if (net->nevents() > 1) {
              stmt_cur_->u_.assign_.events = (ivl_event_t*)
                    calloc(net->nevents(), sizeof(ivl_event_t*));
          }

          for (unsigned edx = 0 ;  edx < net->nevents() ;  edx += 1) {

                /* Locate the event by name. Save the ivl_event_t in the
                   statement so that the generator can find it easily. */
              const NetEvent*ev = net->event(edx);
              ivl_scope_t ev_scope = lookup_scope_(ev->scope());
              ivl_event_t ev_tmp=0;

              assert(ev_scope);
              assert(ev_scope->nevent_ > 0);
              for (unsigned idx = 0;  idx < ev_scope->nevent_; idx += 1) {
                  const char*ename =
                        ivl_event_basename(ev_scope->event_[idx]);
                  if (strcmp(ev->name(), ename) == 0) {
                        ev_tmp = ev_scope->event_[idx];
                        break;
                  }
              }
              // XXX should we assert(ev_tmp)?

              if (net->nevents() == 1)
                  stmt_cur_->u_.assign_.event = ev_tmp;
              else
                  stmt_cur_->u_.assign_.events[edx] = ev_tmp;

                /* If this is an event with a probe, then connect up the
                   pins. This wasn't done during the ::event method because
                   the signals weren't scanned yet. */

              if (ev->nprobe() >= 1) {
                  unsigned iany = 0;
                  unsigned ineg = ev_tmp->nany;
                  unsigned ipos = ineg + ev_tmp->nneg;

                  for (unsigned idx = 0;  idx < ev->nprobe();  idx += 1) {
                        const NetEvProbe*pr = ev->probe(idx);
                        unsigned base = 0;

                        switch (pr->edge()) {
                          case NetEvProbe::ANYEDGE:
                            base = iany;
                            iany += pr->pin_count();
                            break;
                          case NetEvProbe::NEGEDGE:
                            base = ineg;
                            ineg += pr->pin_count();
                            break;
                          case NetEvProbe::POSEDGE:
                            base = ipos;
                            ipos += pr->pin_count();
                            break;
                        }

                        for (unsigned bit = 0; bit < pr->pin_count();
                           bit += 1) {
                            ivl_nexus_t nex = (ivl_nexus_t)
                                  pr->pin(bit).nexus()->t_cookie();
                            assert(nex);
                            ev_tmp->pins[base+bit] = nex;
                        }
                  }
              }
          }
      }
}

bool dll_target::proc_block(const NetBlock*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      /* First, count the statements in the block. */
      unsigned count = 0;
      for (const NetProc*cur = net->proc_first()
             ;  cur ;  cur = net->proc_next(cur))
          count += 1;

      /* If the block has no statements, then turn it into a no-op */
      if (count == 0) {
          stmt_cur_->type_ = IVL_ST_NOOP;
          return true;
      }

      /* If there is exactly one statement, there is no need for the
         block wrapper, generate the contained statement instead. */
      if ((count == 1) && (net->subscope() == 0)) {
          return net->proc_first()->emit_proc(this);
      }


      /* Handle the general case. The block has some statements in
         it, so fill in the block fields of the existing statement,
         and generate the contents for the statement array. */

      stmt_cur_->type_ = (net->type() == NetBlock::SEQU)
          ? IVL_ST_BLOCK
          : IVL_ST_FORK;
      stmt_cur_->u_.block_.nstmt_ = count;
      stmt_cur_->u_.block_.stmt_ = (struct ivl_statement_s*)
          calloc(count, sizeof(struct ivl_statement_s));

      if (net->subscope())
          stmt_cur_->u_.block_.scope = lookup_scope_(net->subscope());
      else
          stmt_cur_->u_.block_.scope = 0;

      struct ivl_statement_s*save_cur_ = stmt_cur_;
      unsigned idx = 0;
      bool flag = true;

      for (const NetProc*cur = net->proc_first()
             ;  cur ;  cur = net->proc_next(cur), idx += 1) {
          assert(idx < count);
          stmt_cur_ = save_cur_->u_.block_.stmt_ + idx;
          bool rc = cur->emit_proc(this);
          flag = flag && rc;
      }
      assert(idx == count);

      stmt_cur_ = save_cur_;

      return flag;
}

/*
 * A case statement is in turn an array of statements with gate
 * expressions. This builds arrays of the right size and builds the
 * ivl_expr_t and ivl_statement_s arrays for the substatements.
 */
void dll_target::proc_case(const NetCase*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      switch (net->type()) {
        case NetCase::EQ:
          stmt_cur_->type_ = IVL_ST_CASE;
          break;
        case NetCase::EQX:
          stmt_cur_->type_ = IVL_ST_CASEX;
          break;
        case NetCase::EQZ:
          stmt_cur_->type_ = IVL_ST_CASEZ;
          break;
      }
      assert(stmt_cur_->type_ != IVL_ST_NONE);

      assert(expr_ == 0);
      assert(net->expr());
      net->expr()->expr_scan(this);
      stmt_cur_->u_.case_.cond = expr_;
      expr_ = 0;

      /* If the condition expression is a real valued expression,
         then change the case statement to a CASER statement. */
      if (stmt_cur_->u_.case_.cond->value_ == IVL_VT_REAL)
          stmt_cur_->type_ = IVL_ST_CASER;

      unsigned ncase = net->nitems();
      stmt_cur_->u_.case_.ncase = ncase;

      stmt_cur_->u_.case_.case_ex = new ivl_expr_t[ncase];
      stmt_cur_->u_.case_.case_st = new struct ivl_statement_s[ncase];

      ivl_statement_t save_cur = stmt_cur_;

      for (unsigned idx = 0 ;  idx < ncase ;  idx += 1) {
          const NetExpr*ex = net->expr(idx);
          if (ex) {
              ex->expr_scan(this);
              save_cur->u_.case_.case_ex[idx] = expr_;
              expr_ = 0;
          } else {
              save_cur->u_.case_.case_ex[idx] = 0;
          }

          stmt_cur_ = save_cur->u_.case_.case_st + idx;
          stmt_cur_->type_ = IVL_ST_NONE;
          if (net->stat(idx) == 0) {
              stmt_cur_->type_ = IVL_ST_NOOP;
          } else {
              net->stat(idx)->emit_proc(this);
          }
      }

      stmt_cur_ = save_cur;
}

bool dll_target::proc_cassign(const NetCAssign*net)
{

      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_CASSIGN;

      /* Make the l-value fields. */
      make_assign_lvals_(net);

      assert(expr_ == 0);
      net->rval()->expr_scan(this);
      stmt_cur_->u_.assign_.rval_ = expr_;
      expr_ = 0;

      return true;
}

bool dll_target::proc_condit(const NetCondit*net)
{
      bool rc_flag = true;

      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_CONDIT;
      stmt_cur_->u_.condit_.stmt_ = (struct ivl_statement_s*)
          calloc(2, sizeof(struct ivl_statement_s));

      assert(expr_ == 0);
      net->expr()->expr_scan(this);
      stmt_cur_->u_.condit_.cond_ = expr_;
      if (expr_ == 0)
          rc_flag = false;
      expr_ = 0;

      ivl_statement_t save_cur_ = stmt_cur_;

      stmt_cur_ = save_cur_->u_.condit_.stmt_+0;
      rc_flag = net->emit_recurse_if(this) && rc_flag;

      stmt_cur_ = save_cur_->u_.condit_.stmt_+1;
      rc_flag = net->emit_recurse_else(this) && rc_flag;

      stmt_cur_ = save_cur_;
      return rc_flag;
}

bool dll_target::proc_deassign(const NetDeassign*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_DEASSIGN;

      /* Make the l-value fields. */
      make_assign_lvals_(net);

      return true;
}

bool dll_target::proc_delay(const NetPDelay*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      ivl_statement_t tmp = (struct ivl_statement_s*)
          calloc(1, sizeof(struct ivl_statement_s));

      if (const NetExpr*expr = net->expr()) {

          stmt_cur_->type_ = IVL_ST_DELAYX;
          assert(expr_ == 0);
          expr->expr_scan(this);
          stmt_cur_->u_.delayx_.expr = expr_;
          expr_ = 0;

          stmt_cur_->u_.delayx_.stmt_ = tmp;

      } else {
          stmt_cur_->type_ = IVL_ST_DELAY;
          stmt_cur_->u_.delay_.stmt_  = tmp;
          stmt_cur_->u_.delay_.value = net->delay();
      }

      ivl_statement_t save_cur_ = stmt_cur_;
      stmt_cur_ = tmp;
      bool flag = net->emit_proc_recurse(this);

      /* If the recurse doesn't turn this new item into something,
         then either it failed or there is no statement
         there. Either way, draw a no-op into the statement. */
      if (stmt_cur_->type_ == IVL_ST_NONE) {
          stmt_cur_->type_ = IVL_ST_NOOP;
      }

      stmt_cur_ = save_cur_;

      return flag;
}

bool dll_target::proc_disable(const NetDisable*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_DISABLE;
      stmt_cur_->u_.disable_.scope = lookup_scope_(net->target());
      return true;
}

bool dll_target::proc_force(const NetForce*net)
{

      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);

      stmt_cur_->type_ = IVL_ST_FORCE;

      /* Make the l-value fields. */
      make_assign_lvals_(net);

      assert(expr_ == 0);
      net->rval()->expr_scan(this);
      stmt_cur_->u_.assign_.rval_ = expr_;
      expr_ = 0;

      return true;
}

void dll_target::proc_forever(const NetForever*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_FOREVER;

      ivl_statement_t tmp = (struct ivl_statement_s*)
          calloc(1, sizeof(struct ivl_statement_s));

      ivl_statement_t save_cur_ = stmt_cur_;
      stmt_cur_ = tmp;

      net->emit_recurse(this);

      save_cur_->u_.forever_.stmt_ = stmt_cur_;
      stmt_cur_ = save_cur_;
}

void dll_target::proc_free(const NetFree*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_FREE;
      stmt_cur_->u_.free_.scope = lookup_scope_(net->scope());
}

bool dll_target::proc_release(const NetRelease*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_RELEASE;

      /* Make the l-value fields. */
      make_assign_lvals_(net);

      return true;
}

void dll_target::proc_repeat(const NetRepeat*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_REPEAT;

      assert(expr_ == 0);
      net->expr()->expr_scan(this);
      stmt_cur_->u_.while_.cond_ = expr_;
      expr_ = 0;

      ivl_statement_t tmp = (struct ivl_statement_s*)
          calloc(1, sizeof(struct ivl_statement_s));

      ivl_statement_t save_cur_ = stmt_cur_;
      stmt_cur_ = tmp;

      net->emit_recurse(this);

      save_cur_->u_.while_.stmt_ = stmt_cur_;
      stmt_cur_ = save_cur_;
}

void dll_target::proc_stask(const NetSTask*net)
{
      unsigned nparms = net->nparms();
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_STASK;
      /* System task names are lex_strings strings. */
      stmt_cur_->u_.stask_.name_ = net->name();
      stmt_cur_->u_.stask_.nparm_= nparms;
      stmt_cur_->u_.stask_.parms_= (ivl_expr_t*)
          calloc(nparms, sizeof(ivl_expr_t));

      for (unsigned idx = 0 ;  idx < nparms ;  idx += 1) {
          if (net->parm(idx))
              net->parm(idx)->expr_scan(this);
          stmt_cur_->u_.stask_.parms_[idx] = expr_;
          expr_ = 0;
      }

}

bool dll_target::proc_trigger(const NetEvTrig*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_TRIGGER;
      stmt_cur_->u_.wait_.nevent = 1;

      /* Locate the event by name. Save the ivl_event_t in the
         statement so that the generator can find it easily. */
      const NetEvent*ev = net->event();
      ivl_scope_t ev_scope = lookup_scope_(ev->scope());

      for (unsigned idx = 0 ;  idx < ev_scope->nevent_ ;  idx += 1) {
          const char*ename = ivl_event_basename(ev_scope->event_[idx]);
          if (strcmp(ev->name(), ename) == 0) {
              stmt_cur_->u_.wait_.event = ev_scope->event_[idx];
              break;
          }
      }


      return true;
}

void dll_target::proc_utask(const NetUTask*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_UTASK;
      stmt_cur_->u_.utask_.def = lookup_scope_(net->task());
}

bool dll_target::proc_wait(const NetEvWait*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_WAIT;
      stmt_cur_->u_.wait_.stmt_ = (struct ivl_statement_s*)
          calloc(1, sizeof(struct ivl_statement_s));

      // This event processing code is also in the NB assign above.
      stmt_cur_->u_.wait_.nevent = net->nevents();
      if (net->nevents() > 1) {
          stmt_cur_->u_.wait_.events = (ivl_event_t*)
              calloc(net->nevents(), sizeof(ivl_event_t*));
      }

      for (unsigned edx = 0 ;  edx < net->nevents() ;  edx += 1) {

            /* Locate the event by name. Save the ivl_event_t in the
             statement so that the generator can find it easily. */
          const NetEvent*ev = net->event(edx);
          ivl_scope_t ev_scope = lookup_scope_(ev->scope());
          ivl_event_t ev_tmp=0;

          assert(ev_scope);
          assert(ev_scope->nevent_ > 0);
          for (unsigned idx = 0 ;  idx < ev_scope->nevent_ ;  idx += 1) {
              const char*ename = ivl_event_basename(ev_scope->event_[idx]);
              if (strcmp(ev->name(), ename) == 0) {
                  ev_tmp = ev_scope->event_[idx];
                  break;
              }
          }
          // XXX should we assert(ev_tmp)?

          if (net->nevents() == 1)
              stmt_cur_->u_.wait_.event = ev_tmp;
          else
              stmt_cur_->u_.wait_.events[edx] = ev_tmp;

            /* If this is an event with a probe, then connect up the
             pins. This wasn't done during the ::event method because
             the signals weren't scanned yet. */

          if (ev->nprobe() >= 1) {
              unsigned iany = 0;
              unsigned ineg = ev_tmp->nany;
              unsigned ipos = ineg + ev_tmp->nneg;

              for (unsigned idx = 0 ;  idx < ev->nprobe() ;  idx += 1) {
                  const NetEvProbe*pr = ev->probe(idx);
                  unsigned base = 0;

                  switch (pr->edge()) {
                      case NetEvProbe::ANYEDGE:
                        base = iany;
                        iany += pr->pin_count();
                        break;
                      case NetEvProbe::NEGEDGE:
                        base = ineg;
                        ineg += pr->pin_count();
                        break;
                      case NetEvProbe::POSEDGE:
                        base = ipos;
                        ipos += pr->pin_count();
                        break;
                  }

                  for (unsigned bit = 0
                           ; bit < pr->pin_count()
                           ; bit += 1) {
                        ivl_nexus_t nex = (ivl_nexus_t)
                            pr->pin(bit).nexus()->t_cookie();
                        assert(nex);
                        ev_tmp->pins[base+bit] = nex;
                  }
              }
          }
      }

      /* The ivl_statement_t for the wait statement is not complete
         until we calculate the sub-statement. */

      ivl_statement_t save_cur_ = stmt_cur_;
      stmt_cur_ = stmt_cur_->u_.wait_.stmt_;
      bool flag = net->emit_recurse(this);
      if (flag && (stmt_cur_->type_ == IVL_ST_NONE))
          stmt_cur_->type_ = IVL_ST_NOOP;

      stmt_cur_ = save_cur_;

      return flag;
}

void dll_target::proc_while(const NetWhile*net)
{
      assert(stmt_cur_);
      assert(stmt_cur_->type_ == IVL_ST_NONE);
      FILE_NAME(stmt_cur_, net);

      stmt_cur_->type_ = IVL_ST_WHILE;
      stmt_cur_->u_.while_.stmt_ = (struct ivl_statement_s*)
          calloc(1, sizeof(struct ivl_statement_s));

      assert(expr_ == 0);
      net->expr()->expr_scan(this);
      stmt_cur_->u_.while_.cond_ = expr_;
      expr_ = 0;

      /* Now generate the statement of the while loop. We know it is
         a single statement, and we know that the
         emit_proc_recurse() will call emit_proc() for it. */

      ivl_statement_t save_cur_ = stmt_cur_;
      stmt_cur_ = save_cur_->u_.while_.stmt_;
      net->emit_proc_recurse(this);
      stmt_cur_ = save_cur_;
}

Generated by  Doxygen 1.6.0   Back to index